First Total Synthesis of Grahamimycin A

Yuichi Kobayashi* and Michitaka Matsuumi

Department of Biomolecular Engineering, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan

> ykobayas@bio.titech.ac.jp Received May 18, 2000

Introduction

Grahamimycin A and grahamimycin A₁ are 14-membered bislactones isolated from medium used for the aerobic fermentation of cultures of *Cytospora* sp. ATCC 20502.¹ Although their structures are similar, the former exhibits stronger antibacterial and antifungal activity toward pathogenic microorganisms. Interestingly, grahamimycin A was shown to be identical to colletoketol,² which had been isolated³ from the pathogenic plant fungus *Colletotrichum capsici* along with other similar bislactones such as colletodiol, colletoallol, and colletol.

Grahamimycin A (1) Grahamimycin A₁ (2) Colletodiol (3)

Among these natural products, grahamimycin A_1 and colletodiol are the only ones that have been target molecules for synthesis.^{4,5} The synthetic strategies exploited for these compounds, however, seem to be only marginally applicable to construction of grahamimycin A. Recently we reported an oxidative conversion of 2-alkylfurans into *trans* 4-oxo-2-alkenoic acids (eq 1).⁶

The conversion is convenient and compatible with the major functional groups commonly used in organic synthesis. Keeping the furan-ring oxidation in mind, grahamimycin A (1) was retrosynthesized through the seco acid **4** into the furan **5** and further into acid **6** and alcohol **7** as depicted in Scheme 1. Herein we report the first total synthesis of **1** based on this idea.

- (1) Gurusiddaiah, S.; Ronald, R. C. Antimicrob. Agents Chemother. 1981, 19, 153–165.
- (2) (a) O'Neill, J. A.; Simpson, T. J.; Willis, C. L. *J. Chem. Soc., Chem. Commun.* **1993**, 738–740. (b) Keck, G. E.; Boden, E. P.; Wiley: M. R. *J. Org. Chem.* **1989**, *54*, 896–906.
- (3) MacMillan, J.; Simpson, T. J. J. Chem. Soc., Perkin Trans. 1 1973, 1487–1493.

(4) Synthesis of Grahamimycin A₁: (a) Seidel, W.; Seebach, D. *Tetrahedron Lett.* **1982**, *23*, 159–162. (b) Ghiringhelli, D. *Tetrahedron Lett.* **1983**, *24*, 287–290. (c) Hillis, L. R.; Ronald, R. C. J. Org. Chem. **1985**, *50*, 470–473. (d) Bestmann, H.-J.; Schobert, R. *Tetrahedron Lett.* **1987**, *28*, 6587–6590. (e) Ohta, K.; Miyagawa, O.; Tsutsui, H.; Mitsunobu, O. Bull. Chem. Soc. Jpn. **1993**, *66*, 523–535. (5) Synthesis of Colletodiol: (a) Tsutsui, H.; Mitsunobu, O. Tetra-

(5) Synthesis of Colletodiol: (a) Tsutsui, H.; Mitsunobu, O. *Tetrahedron Lett.* **1984**, *25*, 2159–2162. (b) Tsutsui, H.; Mitsunobu, O. *Tetrahedron Lett.* **1984**, *25*, 2163–2166. (c) Schnurrenberger, P.; Hungerbühler, E.; Seebach, D. *Liebigs Ann. Chem.* **1987**, 733–744. (d) See ref 2b.

(6) Kobayashi, Y.; Nakano, M.; Kumar, G. B.; Kishihara, K. *J. Org. Chem.* **1998**, *63*, 7505–7515.

Scheme 1. Retrosynthesis of Grahamimycin A

Results and Discussion

First, we examined a route shown in Scheme 2 to synthesize the intermediate **7**. Enantiomerically enriched alcohol **8**⁷ (>98% ee) was converted into aldehyde **11** by a conventional sequence of reactions through **9** in good yield. Reaction of **11** with 2-furyllithium (**12**) afforded a ca. 1:1 mixture of the diastereomers **13**, which appeared as a single spot on a TLC. To remove the unwanted diastereomer, the reaction shown in eq 2 was applied,

which was originally developed for the kinetic resolution of racemic furfuryl alcohols⁸ by using the Sharpless reagent⁹ (*t*-BuO₂H, Ti(OPr)₄, L-(+)- or D-(-)-DIPT). Reaction of **13** with L-(+)-DIPT proceeded without being

⁽⁷⁾ Noyori, R.; Ohkuma, T.; Kitamura, M.; Takaya, H.; Sayo, N.; Kumobayashi, H.; Akutagawa, S. *J. Am. Chem. Soc.* **1987**, *109*, 5856– 5858.

⁽⁸⁾ Kusakabe, M.; Kitano, Y.; Kobayashi, Y.; Sato, F. J. Org. Chem. 1989, 54, 2085–2091.

^{(9) (}a) Martin, V. S.; Woodard, S. S.; Katsuki, T.; Yamada, Y.; Ikeda, M.; Sharpless, K. B. *J. Am. Chem. Soc.* **1981**, *103*, 6237–6240. (b) Finn, M. G.; Sharpless, K. B. In *Asymmetric Synthesis*; Morrison, J. D., Ed., Academic Press: New York, 1985; Vol. 5, Chapter 8, p 247. (c) Rossiter, B. E. In *Asymmetric Synthesis*; Morrison, J. D., Ed., Academic Press: New York, 1985; Vol. 5, Chapter 7, p 193.

affected by the chiral center at the C(8) position (grahamimycin A numbering) and a mixture of 10*R*-alcohol 14, pyranone 16, and DIPT was successfully obtained. Sub-

sequently, the mixture in Et₂O was stirred vigorously with aqueous NaOH to accomplish decomposition of 16 and hydrolysis of DIPT, thus facilitating chromatographic isolation of 14 (41% yield). The high diastereomeric purity of >95% at the C(10) position was determined by ¹H NMR spectroscopy of the crude diol 17 derived from 14 (PPTS, MeOH).¹⁰ In addition, the relative stereochemistry of **14** was independently confirmed by ¹³C NMR spectroscopy of the acetonide **18** prepared from diol **17** (Me₂C(OMe)₂, PPTS, CH₂Cl₂).^{11a} Finally, protection of **14** as the MOM ether followed by selective hydrolysis of the THP group afforded 7 in 82% yield.

Because enantiomerically enriched furfuryl alcohols of >95% ee are conveniently prepared by the reaction of eq 2, reduction of ketone 19 seems to be a better way to prepare the alcohol 7 (eq 3). However, chromatographic

separation of diastereomeric alcohols 7 and 20 (1:1), prepared by reduction with NaBH₄ in 79% yield, was not successful as a result of the close R_f values. Consequently, further investigation to find a reagent suitable for stereoselective reduction of 19 was not continued.

Another fragment 6 proposed in Scheme 1 was prepared from aldehyde 11, the intermediate used in Scheme 2, according to a modification of Simpson's¹² procedure. Thus, the Wittig reaction of 11 with (EtO)₂P(=O)CH₂-

CO₂Et under the conditions developed by Masamune¹³ (DBU, LiCl, MeCN) afforded ester 21, which was not contaminated with the cis isomer (geometric isomer purity >95% by ¹H NMR spectroscopy), and hydrolysis then gave 6 in 62% yield (Scheme 3). Condensation¹⁴ of acid 6 and alcohol 7 afforded 22, and deprotection of the THP group with *p*-TsOH in MeOH produced the key intermediate 5 in good yield. The furan ring of 5 was transformed into the 4-oxo-2-enoic acid moiety by the protocol of eq 1, and the resulting seco acid 4, without purification, was subjected to Yamaguchi macrocyclization¹⁵ (Cl₃C₆H₂COCl, 60 °C) to afford the MOM ether **23**, which upon deprotection of the MOM group with CF₃- CO_2H furnished (–)-grahamimycin A (**1**) ([α]²⁵_D = -34.2 $(c \ 0.052, \ CHCl_3); \ lit.^{1,3} - 33 \ to - 34)$ in 30% overall yield from 5. The ¹H NMR (300 MHz) and ¹³C NMR (75 MHz) spectra of synthetic 1 were in agreement with those previously reported.^{1,3}

In addition, we reinvestigated the reduction of **1** with NaBH₄ to produce colletodiol (3). This was reported by both Simpson^{2a} and Ronald,¹ but neither gave detailed information about the procedure. Reduction was carried out at -15 °C in MeOH to furnish 3 in 81% yield with a high stereoselectivity of >95%: $[\alpha]^{27}_{D} = +35.8$ (*c* 0.118, CHCl₃) (lit.¹⁶ $[\alpha]_D = +36$ (*c* 1.0, CHCl₃)). The ¹H NMR, ¹³C NMR, and IR spectra of **3** thus synthesized were in accord with the reported data.^{2b,3}

In conclusion, we have succeeded, for the first time, in the synthesis of grahamimycin A (1) (= colletoketol). We also confirmed high stereoselectivity in the reduction of 1 to colletodiol (2). We believe that the synthesis provides a good tool for investigation of the biochemical aspects

(15) Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn. **1979**, *52*, 1989–1993. (16) Powell, J. W.; Whalley, W. B. J. Chem. Soc. C **1969**, 911–912.

⁽¹⁰⁾ Diagnostic signals in the ¹H NMR spectra of the syn alcohol 17 and the anti alcohol are 4.94 (dd, J = 9, 4 Hz, 1 H) and 5.03 (dd, J = 9) 8, 3.5 Hz, 1 H), respectively. Data for 17: ¹H NMR (300 MHz, CDCl₃) δ 1.23 (d, J = 6 Hz, 1 H), 1.82–2.06 (m, 2 H), 3.09 (br s, 1 H), 3.46 (br s, 1 H), 4.02–4.15 (m, 1 H), 4.94 (dd, J = 9, 4 Hz, 1 H), 6.23 (dm, J 3 Hz, 1 H), 6.32 (dd, J = 3, 1 Hz, 1 H), 7.36 (dd, J = 2, 1 Hz, 1 H); ¹³C NMR & 156.2, 141.9, 110.2, 105.7, 68.4, 68.3, 43.3, 24.2,

^{(11) (}a) Resonances for the acetonide methyl groups of 18 are observed at δ 30.4 and 19.9 ppm, which are the characteristic values for the *syn* acetonide.^{11b,c} Spectral data of **18**: ¹H NMR (300 MHz, CDCl₃) δ 1.24 (d, J = 6 Hz, 3 H), 1.46 (s, 3 H), 1.56 (s, 3 H), 1.69–1.77 (m, 2 H), 4.04-4.19 (m, 1 H), 4.89-5.02 (m, 1 H), 6.28 (d, J = 3 Hz, 1 (iii, 1 i), 6.23 (id, J = 3, 2 Hz, 1 H), 7.38 (d, J = 2 Hz, 1 H), ¹³C NMR δ 154.3, 142.2, 110.1, 106.7, 99.1, 65.3, 65.1, 36.7, 30.4, 22.3, 19.9. (b) Rychnovsky, S. D.; Skalitzky, D. J. Tetrahedron Lett. 1990, 31, 945-948. (c) Evans, D. A.; Rieger, D. L.; Gage, J. R. Tetrahedron Lett. 1990, 31, 7099-7100.

⁽¹²⁾ O'Neill, J. A.; Lindell, S. D.; Simpson, T. J.; Willis, C. L. J. Chem. Soc., Perkin Trans. 1 1996, 637-644.

⁽¹³⁾ Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.; Masamune, S.; Roush, W. R.; Sakai, T. *Tetrahedron Lett.* **1984**, *25*, 2183-2186.

^{(14) (}a) Boden, E. P.; Keck, G. E. *J. Org. Chem.* **1985**, *50*, 2394–2395. (b) Sunazuka, T.; Hirose, T.; Harigaya, Y.; Takamatsu, S.; Hayashi, M.; Komiyama, K.; Omura, S. J. Am. Chem. Soc. 1997, 119, 10247-10248.

of grahamimycin A as well as colletodiol by using analogues thereof.

Experimental Section

General Methods. Infrared (IR) spectra are reported in wavenumbers (cm⁻¹). Unless otherwise noted, ¹H NMR (300 MHz) and ¹³C NMR (75 MHz) spectra were measured in CDCl₃ using SiMe₄ ($\delta = 0$ ppm) and the center line of CDCl₃ triplet ($\delta = 77.1$ ppm) as internal standards, respectively. Methyl (*R*)-3-hydroxybutanoate (**8**) (98% ee) was kindly offered by Takasago International Corporation, Japan. Routinely, organic extracts were dried over MgSO₄ and concentrated using a rotary evaporator to afford residues, which were purified by chromatography on silica gel.

Methyl (*R*)-3-Tetrahydropyranyloxybutanoate (9). A solution of **8** (7.50 g, 63.5 mmol, >98% ee), DHP (7.5 mL, 83 mmol), and *p*-TsOH·H₂O (120 mg, 0.63 mmol) in CH₂Cl₂ (130 mL) was stirred at 0 °C for 2 h, and saturated NaHCO₃ was added into the solution. After 10 min of vigorous stirring, the resulting mixture was extracted with EtOAc twice, and the combined extracts were washed with brine, dried, and concentrated to give an oil, which was purified by chromatography (hexane/EtOAc) to afford THP ether **9** (12.35 g, 96%): IR (neat) 1741, 1199, 1022 cm⁻¹; ¹H NMR δ 1.18 and 1.28 (2d, *J* = 6 and 6 Hz, 3 H), 1.41–1.86 (m, 6 H), 2.33–2.74 (m, 2 H), 3.42–3.53 (m, 1 H), 3.66 and 3.67 (2s, 3 H), 3.77–3.94 (m, 1 H), 4.10–4.31 (m, 1 H), 4.62–4.78 (m, 1 H). Anal. Calcd for C₁₀H₁₈O₄: C, 59.39; H 8.97. Found: C, 59.47; H, 8.98.

(*R*)-3-Tetrahydropyranyloxy-1-butanol (10). To an icecold suspension of LiAlH₄ (2.32 g, 61.1 mmol) in THF (90 mL) was added a solution of **9** (12.35 g, 61.1 mmol) dissolved in THF (10 mL \times 3), and the mixture was stirred at 0 °C for 30 min and at room temperature for 60 min. The mixture was cooled to 0 °C again, and EtOAc (27 mL, 0.31 mol), H₂O (22 mL, 1.22 mol) in THF (44 mL), and NaF (25.7 g, 0.612 mol) were added to the mixture. The resulting mixture was stirred vigorously at room temperature for 1 h and filtered through a pad of Celite with EtOAc. The filtrate was concentrated, and the residue was purified by chromatography (hexane/EtOAc) to afford alcohol **10** (9.61 g, 90%). The ¹H NMR spectrum of **10** was identical with that reported.¹⁷

(1*R*,3*R*)- and (1*S*,3*R*)-1-(2-Furyl)-3-tetrahydropyranyloxy-1-butanol (13). To a solution of $(COCl)_2$ (3.8 mL, 43.6 mmol) in CH₂Cl₂ (90 mL) was injected DMSO (6.14 mL, 86.5 mmol) at -60 °C. The solution was stirred at the same temperature for 15 min, and a solution of alcohol 10 (5.05 g, 29.0 mmol) dissolved in CH₂Cl₂ (10 mL × 3) was added. After 1 h of stirring at -60 °C, Et₃N (28.3 mL, 204 mmol) was added, and the resulting mixture was warmed gradually to 0 °C over 2 h. Brine was added to the mixture, and the product was extracted with Et₂O three times. The combined ethereal solutions were washed with brine, dried, and concentrated to give aldehyde 11, which was used for the next reaction without further purification.

To an ice-cold solution of furan (7.5 mL, 104 mmol) and bipyridine (ca. 10 mg) in THF (110 mL) was added n-BuLi (34 mL, 2.53 M in hexane, 86 mmol), and the solution was stirred at 0 °C for 80 min to prepare 2-furyllithium (12). The solution was cooled to -70 °C, and the above crude aldehyde 11 dissolved in THF (10 mL \times 3) was added slowly. Stirring was continued at -70 °C for 2 h, and the solution was poured into a mixture of Et₂O and saturated NH₄Cl with vigorous stirring. The organic layer was separated and the aqueous layer was extracted with Et₂O twice. The combined ethereal solutions were dried and concentrated to leave an oil, which was purified by chromatography (hexane/EtOAc) to afford alcohol 13 as a mixture of the diastereoisomers (5.69 g, 82% from alcohol 10): IR (neat) 3418, 1023 cm⁻¹; ¹H NMR δ 1.20, 1.22, 1.32, and 1.33 (4d, J = 6, 6, 6, 6) and 6 Hz, total 3 H), 1.46-2.19 (m, 8 H), 3.11-3.17 (m, 1 H), 3.44-3.59 (m, 1 H), 3.84-4.24 (m, 2 H), 4.51-5.10 (m, 2 H), 6.22-6.26 (m, 1 H), 6.31-6.35 (m, 1 H), 7.35-7.38 (m, 1 H). Anal. Calcd for C₁₃H₂₀O₄: C, 64.98; H, 8.39. Found: C, 65.19; H, 8.45.

(17) Quinkert, G.; Döller, U.; Eichhorn, M.; Küber, F.; Nestler, H. P.; Becker, H.; Bats, J. W.; Zimmermann, G.; Dürner, G. *Helv. Chim. Acta* **1990**, *73*, 1999–2047.

(1R,3R)-1-(2-Furyl)-3-tetrahydropyranyloxy-1-butanol (14). To a solution of Ti(O-*i*-Pr)₄ (0.29 mL, 0.99 mmol) in CH₂-Cl₂ (3 mL) was added L-(+)-DIPT (0.25 mL, 1.2 mmol) at -20 °C. After 10 min of stirring, alcohol 13 (239 mg, 0.993 mmol) dissolved in CH₂Cl₂ (2 mL) and a solution of t-BuOOH in CH₂-Cl₂ (0.24 mL, 2.5 M, 0.60 mmol) were added, and the resulting solution was kept in a freezer (-20 °C) for 30 h. To the solution were added Me₂S (0.044 mL, 0.60 mmol) and, after 30 min at -20 °C, 10% tartaric acid solution (0.20 mL) and NaF (0.25 g, 5.95 mmol). The mixture was stirred vigorously at room temperature for 60 min and filtered through a pad of Celite with Et₂O. The filtrate was concentrated, and the residue was diluted in Et₂O (16 mL). The solution was cooled to 0 °C, and 3 N NaOH (8 mL, 24 mmol) was added to it. The resulting mixture was stirred at room temperature for 1 h vigorously, and the product was extracted with Et₂O three times. The combined extracts were dried and concentrated to afford an oil, which was purified by chromatography (hexane/EtOAc) to afford 14 (98 mg, 41%). The diastereomeric purity at the C(10) position of 14 was determined to be >95% ds by ¹H NMR specroscopy of the diol 17¹⁰ prepared by deprotection of the THP group (PPTS (0.1 equiv), MeOH, rt, 12 h). Data for 14: IR (neat) 3421, 1023 cm⁻¹; ¹Ĥ NMR δ 1.20 and 1.32 (2d, J = 6 and 6 Hz, total 3 H), 1.46– 2.19 (m, 8 H), 3.06-4.26 (m, 4 H), 4.63-5.05 (m, 2 H), 6.22-6.26 (m, 1 H), 6.31-6.35 (m, 1 H), 7.35-7.38 (m, 1 H). Anal. Calcd for C₁₃H₂₀O₄: C, 64.98; H, 8.39. Found: C, 65.00; H, 8.48.

(1*R*,3*R*)-1-(2-Furyl)-1-methoxymethyloxy-3-tetrahydropyranyloxybutane (15). A solution of 14 (2.05 g, 8.53 mmol), MOMCl (1.48 mL, 19.1 mmol), and *i*-Pr₂NEt (4.5 mL, 25.7 mmol) in CH₂Cl₂ (20 mL) was stirred at room temperature overnight and diluted with EtOAc and saturated NaHCO₃. The resulting mixture was stirred vigorously at room temperature for 1 h. The phases were separated, and the aqueous phase was extracted with EtOAc twice. The combined extracts were dried and concentrated to give an oil, which was purified by chromatography (hexane/EtOAc) to furnish MOM ether 15 (2.19 g, 90%): IR (neat) 1029, 921 cm⁻¹; ¹H NMR δ 1.15 and 1.27 (2d, *J* = 6 and 6 Hz, total 3 H), 1.42–2.08 (m, 7 H), 2.15–2.33 (m, 1 H), 3.347 and 3.353 (2s, total 3 H), 3.33–3.97 (m, 3 H), 4.45–4.90 (m, 4 H), 6.26–6.38 (m, 2 H), 7.37–7.43 (m, 1 H). Anal. Calcd for C₁₅H₂₄O₅: C, 63.36; H, 8.51. Found: C, 63.41; H, 8.55.

(2*R*,4*R*)-4-(2-Furyl)-4-methoxymethyloxy-2-butanol (7). A solution of 15 (2.24 g, 7.88 mmol) and *p*-TsOH·H₂O (74 mg, 0.39 mmol) in MeOH (80 mL) was stirred at room temperature for 4 h and diluted with saturated NaHCO₃. Most of the MeOH was removed by evaporation, and the resulting mixture was extracted with EtOAc twice. The combined extracts were dried and concentrated. Chromatography (hexane/EtOAc) of the crude product afforded alcohol 7 (1.43 g, 91%): $[\alpha]^{28}_{D} = +177$ (*c* 1.07, CHCl₃); IR (neat) 3432, 1025, 922 cm⁻¹;¹H NMR δ 1.22 (d, *J* = 6 Hz, 3 H), 1.89 (ddd, *J* = 14, 5, 3 Hz, 1 H), 2.15 (dt, *J* = 14, 9 Hz, 1 H), 2.87 (s, 1 H), 3.39 (s, 3 H), 3.38–4.00 (m, 1 H), 4.52 (d, *J* = 7 Hz, 1 H), 4.62 (d, *J* = 7 Hz, 1 H), 4.87 (dd, *J* = 9, 5 Hz, 1 H), 6.29–6.35 (m, 2 H), 7.39 (s, 1 H); ¹³C NMR δ 152.9, 142.6, 110.1, 108.6, 93.8, 70.5, 66.9, 55.9, 42.9, 23.7. Anal. Calcd for C₁₀H₁₆O₄: C, 59.98; H 8.05. Found: C, 59.59; H, 8.04.

Ethyl (5*R*,2*E*)-5-Tetrahydropyranyloxy-2-hexenoate (21). According to the procedure described above, alcohol **10** (8.72 g, 50.0 mmol) dissolved in CH_2Cl_2 (30 mL) was converted into aldehyde **11** by using (COCl)₂ (5.64 mL, 64.7 mmol), DMSO (9.10 mL, 129 mmol), Et₃N (42 mL, 302 mmol), and CH_2Cl_2 (120 mL). Crude **11** was used for the next reaction without further purification.

To an ice-cold suspension of LiCl (2.65 g, 62.5 mmol) in MeCN (120 mL) were added sequentially (EtO)₂P(=O)CH₂CO₂Et (12.5 mL, 62.4 mmol), DBU (11.6 mL, 77.9 mmol), and crude aldehyde **11** dissolved in MeCN (10 mL \times 3). The mixture was stirred at 0 °C for 30 min and then at room temperature for 60 min. Saturated NH₄Cl was added to the mixture, and most of the MeCN was removed by evaporation. The product was extracted with Et₂O three times, and the combined extracts were dried and concentrated. The residual oil was purified by chromatography (hexane/EtOAc) to afford ester **21** (9.16 g, 76%). The ¹H NMR spectrum of **21** was in good agreement with that reported.¹²

(5R,2E)-5-Tetrahydropyranyloxy-2-hexenoic Acid (6). To an ice-cold solution of ester 21 (9.16 g, 37.8 mmol) in THF (175 mL) were added H₂O (120 mL) and 2 N LiOH (57 mL). The mixture was stirred vigorously at room temperature for 20 h, and most of the THF was removed by evaporation. The residue was diluted with EtOAc and slightly acidified (pH = ca. 4) with 1 N HCl. The phases were separated, and the aqueous layer was extracted with EtOAc. The combined EtOAc phases were dried and concentrated to give an oil, which was purified by chromatography (hexane/EtOAc) to afford acid **6** (5.87 g, 81%). The ¹H NMR spectrum of **6** was in good agreement with that reported.¹²

(1'R,3'R)-3'-(2-Furyl)-3'-methoxymethyloxy-1'-methylpropyl (5R,2E)-5-Tetrahydropyranyloxy-2-hexenoate (22). To an ice-cold solution of alcohol 7 (1.42 g, 7.09 mmol), acid 6 (1.97 g, 9.19 mmol), DMAP (171 mg, 1.40 mmol), and CSA (165 mg, 0.71 mmol) in CH₂Cl₂ (50 mL) was added DCC (2.20 g, 10.7 mmol) in CH₂Cl₂ (20 mL). The resulting solution was stirred at room temperature for 20 h and filtered through a pad of Celite with Et₂O. The filtrate was concentrated and the residual oil was purified by chromatography (hexane/EtOAc) to afford ester **22** (2.16 g, 77%): IR (neat) 1717, 1655, 1023 cm⁻¹; ¹H NMR δ 1.12-1.30 (m, 6 H), 1.41-1.89 (m, 6 H), 1.98-2.16 (m, 1 H), 2.20-2.58 (m, 3 H), 3.36 (s, 3 H), 3.42-3.54 (m, 1 H), 3.79-4.00 (m, 2 H), 4.50 (d, J = 7 Hz, 1 H), 4.58 (d, J = 7 Hz, 1 H), 4.63– 4.76 (m, 2 H), 4.80–4.94 (m, 1 H), 5.83 and 5.85 (2d, J=16 and 16 Hz, total 1 H), 6.24-6.34 (m, 2 H), 6.83-7.06 (m, 1 H), 7.38 (s, 1 H). Anal. Calcd for C₂₁H₃₂O₇: C, 63.62; H, 8.14. Found: C, 63.44: H. 8.09.

(1'R.3'R)-3'-(2-Furyl)-3'-methoxymethyloxy-1'-methylpropyl (5R,2E)-5-Hydroxy-2-hexenoate (5). A solution of THP ether **22** (2.16 g, 5.45 mmol) and *p*-TsOH·H₂O (52 mg, 0.27 mmol) in MeOH (55 mL) was stirred at room temperature for 3 h and diluted with saturated NaHCO3. Most of the MeOH was removed by evaporation, and the resulting mixture was extracted with EtOAc three times. The combined extracts were dried and concentrated to leave a residue, which was purified by chromatography (hexane/EtOAc) to afford alcohol 5 (1.40 g, 82%): $[\alpha]^{31}_{D} = +55.9$ (*c* 1.02, CHCl₃); IR (neat) 3448, 1716, 1032 cm⁻¹; ¹H NMR δ 1.24 (d, J = 6 Hz, 3 H), 1.27 (d, J = 6 Hz, 3 H), 1.67 (br s, 1 H), 2.09 (ddd, J = 14, 8, 5 Hz, 1 H), 2.23-2.40 (m, 3 H), 3.36 (s, 1 H), 3.89-4.01 (m, 1 H), 4.51 (d, J = 7 Hz, 1 H), 4.58 (d, J = 7 Hz, 1 H), 4.69 (dd, J = 8, 7 Hz, 1 H), 4.82-4.95 (m, 1 H), 5.87 (dt, J = 16, 2 Hz, 1 H), 6.26 (dd, J = 3, 1 Hz, 1 H), 6.31 (dd, J = 3, 2 Hz, 1 H), 6.93 (dt, J = 16, 8 Hz, 1 H), 7.38 (d, J = 2 Hz, 1 H); ¹³C NMR δ 165.5, 152.7, 144.9, 142.6, 124.1, 110.1, 108.9, 93.9, 68.2, 68.1, 66.8, 55.7, 42.0, 40.3, 23.4, 20.2. Anal. Calcd for C₁₆H₂₄O₆: C, 61.52; H, 7.74. Found: C, 61.21;H, 7.61

(3E,6R,8R,11E,14R)-8,14-Dimethyl-6-methoxymethyloxy-1,9-dioxacyclotetradeca-3,11-diene-2,5,10-trione (23). To a mixture of 5 (350 mg, 1.12 mmol) and NaHCO₃ (188 mg, 2.24 mmol) in acetone/H₂O (10:1, 6 mL) was added NBS (240 mg, 1.35 mmol) dissolved in acetone/H₂O (10:1, 2 mL) at -15 °C The mixture was stirred for 2.5 h, and furan (0.16 mL, 2.2 mmol) was added to destroy excess NBS. After 60 min at -15 °C, pyridine (0.09 mL, 1.1 mmol) was added, and the mixture was stirred at room temperature for 21 h. Brine and EtOAc were added, and the resulting mixture was acidified with 1 N HCl to pH ca. 4. The phases were separated, and the aqueous phase was extracted with EtOAc. The combined extracts were dried and concentrated to give an oil, which was passed through a short silica gel column with hexane/EtOAc to furnish the corresponding aldehyde: IR (neat) 3455, 1712, 1655 cm⁻¹; ¹H NMR δ 1.24 (d, J = 6 Hz, 3 H), 1.30 (d, J = 6 Hz, 3 H), 2.02 (ddd, J = 15, 6, 4.5 Hz, 1 H), 2.23 (ddd, J = 15, 9, 5 Hz, 1 H), 2.25-2.41 (m, 3 H), 3.37 (s, 3 H), 3.89-4.01 (m, 1 H), 4.32 (t, J = 6 Hz, 1 H), 4.68 (d, J = 7 Hz, 1 H), 4.72 (d, J = 7 Hz, 1 H), 5.10-5.24 (m, 1 H), 5.75 (d, J = 16 Hz, 1 H), 6.58-7.10 (m, 2 H), 7.28 (d, J = 16 Hz, 1 H), 9.73 (d, J = 8 Hz, 1 H); ¹³C NMR δ 199.5, 193.6, 165.6, 146.3, 140.8, 138.2, 123.8, 96.6, 79.0, 67.0, 66.7, 56.4, 41.8, 38.3, 23.3, 20.0.

To a solution of the aldehyde obtained above and 2-methyl-2-butene (1.2 mL, 11 mmol) in *t*-BuOH (15 mL) and the phosphate buffer (pH 3.6, 7 mL) was added NaClO₂ (151 mg, purity 80%, 1.33 mmol) dissolved in H_2O (7 mL). The resulting

mixture was stirred at room temperature for 3 h and slightly acidified by addition of 1 N HCl (pH ca. 4). Most of the t-BuOH was removed by using a vacuum pump. After addition of brine, the mixture was extracted with EtOAc three times. The combined extracts were dried and concentrated to leave crude 4, which was used for the next reaction without further purification. Analytically pure sample was obtained by chromatography: IR (neat) 3161, 1712, 1178 cm⁻¹; ¹H NMR δ 1.25 (d, J = 6Hz, 3 H), 1.28 (d, J = 6 Hz, 3 H), 2.03 (ddd, J = 15, 6, 4 Hz, 1 H), 2.21 (ddd, J = 15, 9, 5 Hz, 1 H), 2.28–2.46 (m, 2 H), 3.36 (s, 3 H), 3.90-4.08 (m, 1 H), 4.29 (dd, J = 6, 5 Hz, 1 H), 4.63 (d, J = 7 Hz, 1 H), 4.70 (d, J = 7 Hz, 1 H), 5.07-5.26 (m, 1 H), 5.75 (d, J = 16 Hz, 1 H), 5.58–6.07 (m, 2 H), 6.75 (d, J = 16 Hz, 1 H), 6.80–7.02 (m, 1 H), 7.41 (d, J= 16 Hz, 1 H); $^{13}\mathrm{C}$ NMR δ 199.1, 168.3, 165.4, 145.8, 136.5, 130.8, 123.7, 96.5, 78.9, 67.1, 56.5, 41.9, 38.5, 23.3, 20.2.

To a solution of the above acid 4 and NEt₃ (0.72 mL, 5.18 mmol) in THF (10 mL) was added 2,4,6-trichlorobenzoyl chloride (0.25 mL, 1.55 mmol). The solution was stirred at room temperature for 4 h, and the resulting white precipitate (Et₃N·HCl) was removed by dilution with toluene (ca. 20 mL) followed by filtration through a pad of Celite with additional toluene (20 mL). The filtrate, after further dilution with toluene (100 mL), was divided into two equal portions, while two solutions of DMAP (each 85 mg, 0.70 mmol) in toluene (each 25 mL) were prepared. Each toluene solution containing the mixed anhydride was added to each solution of DMAP in toluene at 60 °C over 7 h. After the addition, the solutions were stirred further for 1 h and cooled to room temperature. The combined solutions were concentrated to afford a residue, which was purified by chromatography (hexane/EtOAc) to afford lactone 23 (128 mg, 37%) from furan **5**: $[\alpha]^{29}_{D} = -11.3$ (*c* 0.558, CHCl₃); IR (neat) 1728, 1701, 1173, 1054 cm⁻¹; ¹H NMR δ 1.23 (d, J = 6 Hz, 3 H), 1.40 (d, J = 6 Hz, 3 H), 2.06–2.25 (m, 3 H), 2.41–2.50 (m, 1 H), 3.37 (s, 3 H), 4.25 (t, J = 4 Hz, 1 H), 4.66 (d, J = 7 Hz, 1 H), 4.72 (d, J = 7 Hz, 1 H), 5.20–5.35 (m, 2 H), 5.58 (d, J = 16 Hz, 1 H), 6.70 (ddd, J = 16, 11, 6 Hz, 1 H), 6.79 (d, J = 16 Hz, 1 H), 7.21 (d, J = 16 Hz, 1 H); ¹³C NMR δ 200.1, 166.9, 165.2, 143.1, 134.0, 132.3, 127.2, 96.4, 79.1, 70.6, 66.2, 56.4, 40.9, 39.7, 20.5, 20.4. Anal. Calcd for C₁₆H₂₂O₇: C, 58.89; H, 6.79. Found: C, 58.68; H, 7.21

Grahamimycin A (1). To an ice-cold solution of 23 (9.3 mg, 0.028 mmol) in CH2Cl2 (0.44 mL) was added CF3CO2H (0.44 mL, 5.7 mmol). The solution was allowed to stand in a refrigerator (at ca. 3 °C) for 17 h and concentrated to leave an oil, which was purified by chromatography (hexane/EtOAc) to afford 1 (7.0 mg, 87%): $[\alpha]^{25}_{D} = -34.2$ (c 0.052, CHCl₃) [lit.³ $[\alpha]^{21}_{D} = -33$ (c 1.48, CHCl₃), lit.¹ [α]²²_D = -34 (*c* 1.47, CHCl₃)]; mp 138–140 °C (recrystallized from hexane/CH₂Cl₂) [lit.³ mp 138-139 °C; lit.¹ mp 147.5–150 °C]. Spectral data of **1** updated: IR (CHCl₃) 1725, 1706, 1655, 1362, 1175 cm⁻¹; ¹H NMR δ 1.39 (d, J = 7 Hz, 3 H), 1.43 (d, J = 6 Hz, 3 H), 1.80 (ddd, J = 16, 5, 4 Hz, 1 H), 2.13 (ddd, J = 16, 5, 3 Hz, 1 H), 2.37 (dt, J = 13, 11 Hz, 1 H), 2.56 (dddd, J = 13, 5, 3, 2 Hz, 1 H), 3.14 (d, J = 5 Hz, 1 H), 4.54 (dt, dt)J = 4, 5 Hz, 1 H), 5.00–5.14 (m, 1 H), 5.30–5.42 (m, 1 H), 5.90 (d, J = 16 Hz, 1 H), 6.71 (d, J = 16 Hz, 1 H), 6.75 (ddd, J = 16, 11, 5 Hz, 1 H), 7.09 (d, J = 16 Hz, 1 H); ¹³C NMR δ 200.7, 165.3, 165.2, 143.9, 134.3, 132.6, 126.8, 72.9, 70.8, 67.1, 40.5, 40.3, 20.7, 18.6

Reduction of Grahamimycin (1) to Colletodiol (3). To a solution of **1** (16 mg, 0.057 mmol) in MeOH (0.8 mL) at -15 °C was added NaBH₄ (4.3 mg, 0.11 mmol) portionwise. After 30 min at -15 °C, the solution was diluted with saturated NH₄Cl and EtOAc. The resulting mixture was extracted with EtOAc three times, and the combined extracts were dried and concentrated. The residue was purified by chromatography to furnish **3** (13 mg, 81%): $[\alpha]^{27}_{D} = +35.8$ (*c* 0.118, CHCl₃) (lit.¹⁶ $[\alpha]_{D} = +36$ (*c* 1.0, CHCl₃)); mp 163–165 °C (recrystallized from hexane/Et₂O) (lit.¹⁶ 164–167 °C; lit.^{2b} 165 °C; lit.¹⁸ 159–161 °C). The ¹H NMR, ¹³C NMR, and IR spectra of **3** thus synthesized were in accord with the reported data.^{2b,3}

Acknowledgment. We gratefully acknowledge the generous supply of methyl (*R*)-3-hydroxybutanoate from Takasago International Corporation.

JO000762C

⁽¹⁸⁾ Fujimoto, H.; Nagano, J.; Yamaguchi, K.; Yamazaki, M. Chem. Pharm. Bull. 1998, 46, 423-429.